Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work

Self-force in a modified radiation gauge for circular and eccentric orbits

Cesar Antonio Merlin Gonzalez Leor Barack

School of Mathematics/University of Southampton

April 2013

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work
			00000	

2 SF in a modified radiation gauge

3 Numerical Implementation

- Algorithm
- Metric perturbation reconstruction and SF-modes
- Numerical Results
- Gauge invariant red-shift

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work
Motiv	ation			

- One of the main sources of gravitational waves is the inspiral of compact objects into massive black holes in galactic nuclei.
- We work in the extreme mass-ratio inspiral (EMRI) regime, where the separation distance is small but the mass ratio of the bodies is large.
- The EMRI problem is amenable to a perturbative treatment, where the perturbation gives rise to the self-force (SF).
- Obtain accurate theoretical templates of EMRI waveforms. This waveforms have to include deviations from the geodesic motion due to the SF.
- Current calculations of the SF rely on numerical solutions of the linearised Einstein's equations in the Lorenz gauge. For Kerr the field equations in the Lorenz gauge are not separable.

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work

- The treatment of black-hole perturbations for Kerr is much simpler in the radiation gauge, where it is possible to reconstruct the perturbations from the Weyl scalars.
- In the radiation gauge we don't have a SF formulation. The perturbation due to a point particle is a string-like 1-D singularity.
- We work in a gauge where it is "easy" to obtain the metric perturbations and relates through a regular gauge transformation to the Lorenz gauge. We call it *modified radiation gauge* (Mrad).
- The implementation will give the gravitational SF starting from a "force" in the outgoing radiation gauge. We use the mode-sum to obtain the SF.

$$F^{\alpha}_{self}(x_0) = \sum_{\ell=0}^{\infty} \left(F^{\alpha \ell}_{full \pm}(x_0) \mp A^{\alpha}L - B^{\alpha} - C^{\alpha}/L \right) - D^{\alpha}, \ (L \equiv \ell + 1/2).$$

Numerical Implementation

SF in a modified radiation gauge

Consider a particle of mass **m** moving along Γ . Let the particle be embedded in the curvature of a massive Schwarzschild black hole of mass *M*.

In Mrad the perturbation near the particle has the same leading-order singularity as the Lorenz gauge,

$$h_{lphaeta}^{
m Mrad}=2\mu\epsilon_0^{-1}(g_{lphaeta}+2u_lpha u_eta)+O(1).$$

We associate a given field point x^{α} with a "nearby" point on the worldline (δx^{α}) . The most convenient choice is to take $x_0^{\alpha}(x)$ to be the point on Γ with the same retarded time as x^{α} ($\delta u = 0$).

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work

The metric perturbation tensor transforms (from Rad \rightarrow Mrad) according to

$$h_{lphaeta}^{\mathrm{Mrad}} = h_{lphaeta}^{\mathrm{Rad}} + \xi_{lpha;eta} + \xi_{eta;lpha}.$$

Which admits analytical solutions given by

$$\xi_{\alpha}^{\pm} = \mp 2u_{\alpha}\ln(\epsilon_{0} \mp u_{\alpha}\delta x^{\alpha}) + \frac{\delta_{\alpha}}{\Delta_{\nu}^{\pm}},$$

where

$$\delta_{lpha} \equiv 2\mathcal{L}\left\{0, -\frac{\delta \varphi}{u^{u}}, \frac{\delta \theta}{u^{\varphi}}, \frac{\delta \varphi}{u^{\varphi}}
ight\}.$$

Sac

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work

Before calculating the contributions to the SF we decompose ξ_{α}^{\pm} in ℓ -modes,

$$\xi_{\alpha\perp}^{\pm\ell} = \pm \delta_0^\ell \left(0, \ -\frac{\mathcal{L}^2 f_0}{r_0^2 (\mathcal{E} - \dot{r})}, 0, \mathcal{L} \right) \quad (\text{in EF coordinates}).$$

We compare with the mode sum formula

$$F_{\alpha}^{\mathrm{Mrad}} = \sum_{\ell=0}^{\infty} \left[F_{\alpha}^{\mathrm{Rad}\,\ell} + \delta F_{\alpha}^{\mathrm{Rad} \to \mathrm{Mrad}\,\ell} - A_{\alpha}L - B_{\alpha} - C_{\alpha}/L \right] - D_{\alpha},$$

due to the behaviour of the regularization parameters, we see that

$$\delta A_{\alpha} = \delta B_{\alpha} = \delta C_{\alpha} = 0, \quad \delta D_{\alpha} = \delta_{\xi} F_{\alpha}^{\operatorname{Rad} \to \operatorname{Mrad} \ell = 0}$$

Outline	Motivation	SF in a modified radiation gauge	Numerical Implementation	Summary and future work

Finally we calculate the change in the SF with

$$\delta F_{grav}^{\alpha\,\ell} = -\mathbf{m} \left[\left(g^{\alpha\lambda} + u^{\alpha} u^{\lambda} \right) \frac{D^2 \xi_{\lambda}^{\ell}}{D\tau^2} + R^{\alpha}_{\ \mu\lambda\nu} \, u^{\mu} \xi^{\ell\,\lambda} u^{\nu} \right].$$

We obtain the explicit value of δD_{α} :

$$\delta D_{\alpha}^{\pm} = \left\{ \pm \frac{\mathbf{m}^2 \mathcal{L}^2 C_t(\mathcal{E}, r, \dot{r})}{r^7 (\mathcal{E} - \dot{r})^3}, \frac{\mathbf{m}^2 \mathcal{L}^2 C_r(\mathcal{E}, r, \dot{r})}{r^7 f(\mathcal{E} - \dot{r})^3}, 0, \pm \frac{2\mathbf{m}^2 \mathcal{L} C_{\varphi}(\mathcal{E}, r, \dot{r})}{r^4 (\mathcal{E} - \dot{r})^2} \right\}.$$

For circular orbits they reduce to

$$\delta D_{\alpha}^{\pm} = \left\{ 0, \pm \frac{3m^2 M^2}{r^{5/2} (r - 3M)^{3/2}}, 0, 0 \right\}.$$

Sac

Numerical Implementation

Motivation

- Analytically solve for the m = 0 modes for $\ell > 2$.
- We integrate numerically the homogeneous Teukolsky equation (with s = 2) with ingoing boundary conditions for each ℓ, m.
- We obtain the corresponding Weyl curvature scalar ψ_0 at x_0^{α} by imposing junction conditions at x_0^{α} given by the source.

 Outline
 Motivation
 SF in a modified radiation gauge
 Numerical Implementation
 Summary and future work

 ○●○○○
 ○●○○○

Weyl Scalar ψ_0

Obtained from Teukolsky equation for s = 2

$$(r^2 - 2Mr)\psi_0'' + 6(r - M)\psi_0' - \left[rac{\omega^2 r^4}{r^2 - 2Mr} + rac{4ir^2\omega(r - 3M)}{r^2 - 2Mr} - ar{\eth}_3 \eth_2
ight]\psi_0 = -4\pi r^2 T_2.$$

For circular orbits it can be obtained algebraically in terms of ψ_0

$$\Psi_{\ell m} = 8 \frac{(-1)^m (\ell+2)(\ell+1)\ell(\ell-1)\bar{\psi}_{\ell,-m} + 12imM\Omega\psi_{\ell m}}{\left[(\ell+2)(\ell+1)\ell(\ell-1)\right]^2 + 144m^2M^2\Omega^2}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Outline Motivation SF in a modified radiation gauge Numerical Implementation . ● ○ ○ ○

In terms of the Hertz potential

$$\begin{split} h_{\alpha\beta} &= -r^4 \left\{ n_\alpha n_\beta (\bar{\delta} + 2\beta) (\bar{\delta} + 4\beta) + \bar{m}_\alpha \bar{m}_\beta (\Delta + 5\mu - 2\gamma) \right. \\ \left. (\Delta + \mu - 4\gamma) - n_{(\alpha} \bar{m}_{\beta)} \left[(\bar{\delta} + 4\beta) (\Delta + \mu - 4\gamma) \right. \\ \left. + (\Delta + 4\mu - 4\gamma) (\bar{\delta} + 4\beta) \right] \right\} \Psi + \text{c.c.} \end{split}$$

Sac

- A 🗐 🕨

Numerical Implementation

Self-force in *l*-modes

Motivation

 ℓ -modes in log-log scale of the SF after regularization. Taken from the limit $r \to r_0^+$ (red) and the limit $r \to r_0^-$ (blue). The small graph is in linear scale.

Gauge invariant red-shift

Detweiler showed that for circular orbits in Schwarszchild there are two gauge invariant quantities that carry out non-trivial information about the conservative SF dynamics: Ω and $u^t \equiv U$. In practical calculations we compute:

$$H \equiv rac{1}{2} h^R_{lphaeta} u^lpha u^eta, \quad rac{d au}{d au} = 1 + H,$$

where $\tilde{\tau}$ is the proper time along the geodesic of the effective metric $\tilde{g} = g + h^R$ and τ along the projection on g.

$$H^{\mathrm{Mrad}} = \sum_{\ell=0}^{\infty} \left[H^{\mathrm{Rad}\,\ell} - (B^H - \delta B^H) - (C^H - \delta C^H)/L \right] - (D^H - \delta D^H),$$

with $\delta B^H = \delta C^H = \delta D^H = 0$, for circular orbits.

Outline	Motivation

Sac

H in ℓ -modes

 ℓ -modes of H after regularization.

Image: A mathematical states and a mathem

Outline	Motivation	

Summary and future work

- We have obtained the gauge transformation from the radiation gauge to the modified radiation gauge. This transformation has a null-string singularity (at each $\delta u = 0$) but it is possible to construct a regular solution along half-ray.
- The new mode-sum formula to obtain the GSF in a new modified radiation gauge (Schwarzschild).
- We have calculated numerically ℓ -modes contributions to SF and showed that the results from our implementation are consistent with all the regularization parameters given by the mode-sum formula.
- Include the low ℓ modes ($\ell = 0, 1$) to compute numerically the SF and the gauge invariant quantity H.
- Extend the numerical implementation to obtain the SF for non-circular orbits.
- Compute numerically the gravitational SF and the gauge invariant quantity *H* for the Kerr case.