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Motivation

One of the main sources of gravitational waves is the inspiral of compact objects
into massive black holes in galactic nuclei.

We work in the extreme mass-ratio inspiral (EMRI) regime, where the separation
distance is small but the mass ratio of the bodies is large.

The EMRI problem is amenable to a perturbative treatment, where the
perturbation gives rise to the self-force (SF).

Obtain accurate theoretical templates of EMRI waveforms. This waveforms have
to include deviations from the geodesic motion due to the SF.

Current calculations of the SF rely on numerical solutions of the linearised
Einstein’s equations in the Lorenz gauge. For Kerr the field equations in the
Lorenz gauge are not separable.
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The treatment of black-hole perturbations for Kerr is much simpler in the
radiation gauge, where it is possible to reconstruct the perturbations from the
Weyl scalars.

In the radiation gauge we don’t have a SF formulation. The perturbation due to
a point particle is a string-like 1-D singularity.

We work in a gauge where it is “easy” to obtain the metric perturbations and
relates through a regular gauge transformation to the Lorenz gauge. We call it
modified radiation gauge (Mrad).

The implementation will give the gravitational SF starting from a “force” in the

outgoing radiation gauge. We use the mode-sum to obtain the SF.

F
α

self (x0) =
∞
∑

ℓ=0

(

F
αℓ
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α
L− B

α
− C

α/L
)

− D
α, (L ≡ ℓ+ 1/2).
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SF in a modified radiation gauge

Consider a particle of mass m moving along Γ. Let the particle be embedded in the
curvature of a massive Schwarzschild black hole of mass M.

Γ

δu = 0

ǫ0 xα

xα0

In Mrad the perturbation near the particle
has the same leading-order singularity as the
Lorenz gauge,

hMrad

αβ = 2µǫ−1
0 (gαβ + 2uαuβ) + O(1).

We associate a given field point xα with a “nearby” point on the worldline (δxα). The

most convenient choice is to take xα0 (x) to be the point on Γ with the same retarded

time as xα (δu = 0).
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The metric perturbation tensor transforms (from Rad→Mrad) according to

hMrad

αβ = hRad

αβ + ξα;β + ξβ;α.

Which admits analytical solutions given by

ξ±α = ∓2uα ln(ǫ0 ∓ uαδx
α) +

δα

∆±
v

,

where

δα ≡ 2L

{

0,−
δϕ

uu
,
δθ

uϕ
,
δϕ

uϕ

}

.

Γ
δu = 0

ǫ0
xα

xα0
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Before calculating the contributions to the SF we decompose ξ±α in ℓ-modes,

ξ±ℓ
α⊥

= ±δℓ0

(

0, −
L2f0

r20 (E − ṙ)
, 0,L

)

(in EF coordinates).

We compare with the mode sum formula

FMrad
α =

∞
∑

ℓ=0

[

FRad ℓ
α + δFRad→Mrad ℓ

α − AαL− Bα − Cα/L
]

− Dα,

due to the behaviour of the regularization parameters, we see that

δAα = δBα = δCα = 0, δDα = δξF
Rad→Mrad ℓ=0
α .
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Finally we calculate the change in the SF with

δFα ℓ
grav = −m

[

(gαλ + uαuλ)
D2ξℓλ
Dτ2

+ Rα
µλνu

µξℓ λuν

]

.

We obtain the explicit value of δDα:

δD±
α =

{

±
m2L2Ct(E, r , ṙ)

r7(E − ṙ)3
,
m2L2Cr (E, r , ṙ)

r7f (E − ṙ)3
, 0,±

2m2LCϕ(E, r , ṙ)

r4(E − ṙ)2

}

.

For circular orbits they reduce to

δD±
α =

{

0,±
3m2M2

r5/2(r − 3M)3/2
, 0, 0

}

.
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Numerical Implementation

Weyl Scalar
ψ0

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

Self-force
Fα
self

mode-sum

Analytically solve for the m = 0 modes for ℓ > 2.

We integrate numerically the homogeneous Teukolsky
equation (with s = 2) with ingoing boundary
conditions for each ℓ,m.

We obtain the corresponding Weyl curvature scalar ψ0

at xα0 by imposing junction conditions at xα0 given by
the source.
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Weyl Scalar
ψ0

Obtained from Teukolsky equation for s = 2

(r2 − 2Mr)ψ′′
0 + 6(r −M)ψ′

0 −

[

ω2r4

r2 − 2Mr

+
4ir2ω(r − 3M)

r2 − 2Mr
− ð̄3ð2

]

ψ0 = −4πr2T2.
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Weyl Scalar
ψ0

Hertz potential
Ψ

For circular orbits it can be obtained algebraically in terms of
ψ0

Ψℓm = 8
(−1)m(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)ψ̄ℓ,−m + 12imMΩψℓm

[(ℓ+ 2)(ℓ + 1)ℓ(ℓ − 1)]2 + 144m2M2Ω2
.



Outline Motivation SF in a modified radiation gauge Numerical Implementation Summary and future work

Weyl Scalar
ψ0

Hertz potential
Ψ

Metric
Perturbations

hαβ

In terms of the Hertz potential

hαβ =− r4
{

nαnβ(δ̄ + 2β)(δ̄ + 4β) + m̄αm̄β(∆+ 5µ− 2γ)

(∆+ µ− 4γ)− n(αm̄β)

[

(δ̄ + 4β)(∆ + µ− 4γ)

+(∆+ 4µ− 4γ)(δ̄ + 4β)
]}

Ψ+ c.c.
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Weyl Scalar
ψ0

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

The full force is obtained with the equation of motion

Fα
full ≡ −m(gαβ + uαuβ)

(

∇µhνβ −
1

2
∇βhµν

)

uµuν .
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Weyl Scalar
ψ0

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

Self-force
Fα
self

mode-sum

We regularize each mode using the mode-sum formula:

FMrad
α =

∞
∑

ℓ=0

[

FRad ℓ
α − AαL− Bα

]

+ δDα .
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Self-force in ℓ-modes
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ℓ-modes in log-log scale of the SF after regularization. Taken from the
limit r → r

+
0 (red) and the limit r → r

−

0 (blue). The small graph is in
linear scale.

Cesar Antonio Merlin Gonzalez Leor Barack Self-force in a modified radiation gauge for circular and eccentric orbits



Outline Motivation SF in a modified radiation gauge Numerical Implementation Summary and future work

Gauge invariant red-shift

Detweiler showed that for circular orbits in Schwarszchild there are two gauge
invariant quantities that carry out non-trivial information about the conservative SF
dynamics: Ω and ut ≡ U. In practical calculations we compute:

H ≡
1

2
hRαβu

αuβ ,
dτ

d τ̃
= 1 + H,

where τ̃ is the proper time along the geodesic of the effective metric g̃ = g + hR and
τ along the projection on g .

HMrad =
∞
∑

ℓ=0

[

HRad ℓ − (BH − δBH )− (CH − δCH )/L
]

− (DH − δDH ),

with δBH = δCH = δDH = 0, for circular orbits.
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H in ℓ-modes
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ℓ-modes of H after regularization.
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Summary and future work

We have obtained the gauge transformation from the radiation gauge to the
modified radiation gauge. This transformation has a null-string singularity (at
each δu = 0) but it is possible to construct a regular solution along half-ray.

The new mode-sum formula to obtain the GSF in a new modified radiation
gauge (Schwarzschild).

We have calculated numerically ℓ-modes contributions to SF and showed that
the results from our implementation are consistent with all the regularization
parameters given by the mode-sum formula.

Include the low ℓ modes (ℓ = 0, 1) to compute numerically the SF and the gauge
invariant quantity H.

Extend the numerical implementation to obtain the SF for non-circular orbits.

Compute numerically the gravitational SF and the gauge invariant quantity H for
the Kerr case.
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